
Arrays
Course: Algorithms, Data Structures, and Programming

https://gamma.app/?utm_source=made-with-gamma

LECTURE GOALS

Understand the concept

Of an array as a data structure.

Know the organization

Of arrays in memory.

Analyze the complexity

Of array operations.

Understand the differences

Between one-dimensional and multi-dimensional arrays.

https://gamma.app/?utm_source=made-with-gamma

Introduction and Motivation

Problem Statement

How to store grades for 100 students?

Inefficient to use separate variables.

Impossible to process in a loop.

Difficulty in scaling.

Solution 4 Arrays

An array as a container for storing homogeneous data:

Access by index in O(1).

Possibility of processing in loops.

https://gamma.app/?utm_source=made-with-gamma

Array Data Structure
An array is a fixed-size data structure that stores elements of the same
type in a contiguous memory region.

Fixed Size

Defined at creation, cannot be
changed.

Homogeneous Elements

All elements have the same
data type.

Sequential Placement

Elements are located one after
another in memory.

https://gamma.app/?utm_source=made-with-gamma

Memory Allocation and Access

Array int arr[5] = {10, 20, 30, 40, 50};
Memory:
Address: 1000 1004 1008 1012 1016
+-----+
Value:| 10 | 20 | 30 | 40 | 50 |
+-----+
Index: 0 1 2 3 4

Memory Allocation Scheme

Element Address Calculation

Address arr[i] = BaseAddress + i × sizeof(data_type)

Example: arr[3] = 1000 + 3 × 4 = 1012

https://gamma.app/?utm_source=made-with-gamma

Time Complexity Analysis
The time complexity of an algorithm describes how the algorithm's
execution time grows with the increase in input size. This is critically
important for understanding the scalability and performance of programs.

Types of Analysis

There are best, average, and
worst-case scenarios for
execution. We are most often
interested in the worst-case,
as it guarantees an upper
bound on performance.

Why O-Notation?

Big O notation (O-notation)
allows us to abstract away
from specific implementation
details and hardware, focusing
on how an algorithm scales
with increasing input data (N).

What is O-Notation?

It describes the upper bound
of the growth of execution
time, showing how quickly an
algorithm becomes slower as
the input data size (N)
increases. For example, O(N)
for linear growth, O(N^2) for
quadratic.

https://gamma.app/?utm_source=made-with-gamma

One-dimensional Arrays: Operations and
Complexity

// �5NO6?5A85
int arr[10]; // @4EE86 87 10 F5?OE G8E5?

// �A8F84?874F8O
int arr[5] = {1, 2, 3, 4, 5};
int arr[] = {1, 2, 3};

arr[0] = 100; // 74?8EP
int x = arr[2]; // GF5A85

Declaration and Initialization in C++

Accessing Elements

Core Operations and Their Complexity

Operation Complexity Explanation

Index Access O(1) Direct
addressing

Element Search O(n) Requires
iteration

Insert at End O(1) If space is
available

Insert in Middle O(n) Shifting
elements

Deletion O(n) Shifting
elements

https://gamma.app/?utm_source=made-with-gamma

Two-Dimensional Arrays (Matrices)

int matrix[3][4]; // matrix 3x4

Logical Representation:
[0] [1] [2] [3]
[0] 1 2 3 4
[1] 5 6 7 8
[2] 9 10 11 12

Physical Arrangement:
[1][2][3][4][5][6][7][8][9][10][11][12]
± ± ±
row 0 row 1 row 2

Concept and Declaration

Array of arrays (matrix), a table with rows and columns.

Memory Allocation (Row-major order)

Formula for Element Address matrix[i][j]

Address = BaseAddress + (i × number_of_columns + j) ×
sizeof(type)

Example: matrix[2][1] = 2000 + (2 × 4 + 1) × 4 = 2036

https://gamma.app/?utm_source=made-with-gamma

Time Complexity Analysis

int findMax(int arr[], int n) {
 int max = arr[0];
 for(int i = 1; i < n; i++)
 if(arr[i] > max) max = arr[i];
 return max;
} // Overall Complexity: O(n)

1

Finding Maximum in an Array

int linearSearch(int arr[], int n, int key) {
 for(int i = 0; i < n; i++)
 if(arr[i] == key) return i;
 return -1;
} // Complexity: O(n)

2

Linear Search for an Element

int sumMatrix(int mat[][M], int N, int M) {
 int sum = 0;
 for(int i = 0; i < N; i++)
 for(int j = 0; j < M; j++)
 sum += mat[i][j];
 return sum;
} // Overall Complexity: O(N × M)

3

Matrix Processing

https://gamma.app/?utm_source=made-with-gamma

Practical Aspects and Application

Advantages of Arrays

Fast access by index O(1).

Efficient memory usage.

Good data locality (cache-friendly).

Simplicity of implementation.

Disadvantages of Arrays

Fixed size.

Inefficient insertion/deletion O(n).

Possibility of out-of-bounds access.

Unused memory with partial filling.

When to use Arrays

Maximum data size is known.

Frequent access by index.

Rare insertions/deletions.

Maximum performance is required.

https://gamma.app/?utm_source=made-with-gamma

Review Questions and Homework

Review Questions

What is an array and what are its characteristics?

How to calculate the address of an array element?

Time complexity of accessing an element?

Difference between a one-dimensional and a two-
dimensional array?

Why is traversing a matrix row by row more efficient?

Homework

Student grade processing program:

Store grades of N students for M subjects.

Calculate the average score for each student.

Find the best student and the most difficult subject.

Display statistics in a table format.

https://gamma.app/?utm_source=made-with-gamma

