Arrays

Course: Algorithms, Data Structures, and Programming

b

' ade;iRMI'I.I'IFl |

https://gamma.app/?utm_source=made-with-gamma

LECTURE GOALS

Understand the concept

Of an array as a data structure.

Know the organization

Of arrays in memory.

Analyze the complexity

Of array operations.

Understand the differences

Between one-dimensional and multi-dimensional arrays.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Introduction and Motivation

Problem Statement

How to store grades for 100 students?

Inefficient to use separate variables.
Impossible to process in a loop.
Difficulty in scaling.

Solution — Arrays

An array as a container for storing homogeneous data:

e Access by index in O(1).

e Possibility of processing in loops.

000014

IE)

0100018

0.0001d

0.000Id

0.000lld

0.000ld

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Array Data Structure

An array is a fixed-size data structure that stores elements of the same
type in a contiguous memory region.

Fixed Size Homogeneous Elements . 10000111111001117911208111127771112231111116671910011520117111111112 .
Defined at creation, cannot be All elements have the same) (
Changed. data type 100077136071111723151483111674721122311147118012211800219113111111129

)
Sequential Placement

Elements are located one after
another in memory.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Memory Allocation and Access

Memory Allocation Scheme

Array int arr[5] = {10, 20, 30, 40, 50};

Memory:

Address: 1000 1004 1008 1012 1016

b . aF

Value:| 10 | 20 | 30 | 40 | 50 |

Feeeee ar

Index:01234

002412500

Element Address Calculation 005012000

Address arr[i] = BaseAddress + i x sizeof(data_type)

Example: arr[3] =1000 + 3 x 4 =1012

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Time Complexity Analysis

The time complexity of an algorithm describes how the algorithm's
execution time grows with the increase in input size. This is critically
important for understanding the scalability and performance of programs.

Types of Analysis Why O-Notation?

There are best, average, and Big O notation (O-notation)
worst-case scenarios for allows us to abstract away
execution. We are most often from specific implementation
interested in the worst-case, details and hardware, focusing
as it guarantees an upper on how an algorithm scales
bound on performance. with increasing input data (N).

What is O-Notation?

It describes the upper bound
of the growth of execution
time, showing how quickly an : : ' ' '

100 0 5 29 10
algorithm becomes slower as .
the input data size (N) &
increases. For example, O(N) p
for linear growth, O(N*2) for
quadratic.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

One-dimensional Arrays: Operations and
Complexity

Declaration and Initialization in C++ Core Operations and Their Complexity

// ObbsABNEHNE Operation Complexity Explanation
int arr[10]; // maccne 3 10 uenbIX Yncen

Index Access O(1) Direct
// NHnuymanmsauyms addressing
intarr[5]={1, 2, 3, 4, 5};
intarr[]={1, 2, 3}; Element Search O(n) Requires
iteration
ACCGSSII'IQ Elements Insert at End O(1) If space is
available
arr[0] = 100; // 3annckb e .
int x = arr[2]; // uTeHue Insert in Middle O(n) Shifting
elements
Deletion O(n) Shifting
elements

< Made with GAMIA)

https://gamma.app/?utm_source=made-with-gamma

Two-Dimensional Arrays (Matrices)

Concept and Declaration

Array of arrays (matrix), a table with rows and columns.

int matrix[3][4]; // matrix 3x4

Memory Allocation (Row-major order)

Logical Representation:
[01 [1]1[2] [3]

[0]1234

[115678
[219101112

Physical Arrangement:
[11021(31[4]1[51(61[71[8][91[10][1 1][1 2]
T1T1

row O row 1 row 2

1/

—I:IIDDDDIJCI.I:IDDDDI:I
-0oopoDDODODOOOD
-0oopooOOo0OODOOO
-00000O0OOO0ODOODO
-ooooo0ooooOoOOoOooo
-0000O00OO0ODO0O0OOO0OO0

-ooDoooDoOOODODOODOOOD :

P
dih
Formula for Element Address matrix[il[j]

Address = BaseAddress + (i x number_of_columns + j) x
sizeof(type)

Example: matrix[2][1] = 2000 + (2 x4 + 1) x 4 = 2036

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

O/n Of*M

Time Complexity Analysis

Finding Maximum in an Array

int findMax(int arr[], int n) {
i int max = arr[0];
for(inti=1;i<n;i++)
if(arr[i] > max) max = arrl[i];
return max;
} // Overall Complexity: O(n)

Linear Search for an Element

int linearSearch(int arrf], int n, int key) {

2 for(inti=0;i<n; i++)
if(arr[i] == key) return i;
return -1;

} // Complexity: O(n)

Matrix Processing

int sumMatrix(int mat[][M], int N, int M) {
int sum = 0;
3 for(inti=0;i<N;i++)
for(intj=0; j <M; j++)
sum += matlil[j];
return sum;
} // Overall Complexity: O(N x M)

C Made with GAMIA)

https://gamma.app/?utm_source=made-with-gamma

Practical Aspects and Application

Advantages of Arrays Disadvantages of Arrays When to use Arrays

e Fast access by index O(1). e Fixed size. e Maximum data size is known.

e Efficient memory usage. ¢ |nefficient insertion/deletion O(n). e Frequent access by index.

e Good data locality (cache-friendly). e Possibility of out-of-bounds access. e Rare insertions/deletions.

e Simplicity of implementation. e Unused memory with partial filling. e Maximum performance is required.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Review Questions and Homework

Review Questions

e What is an array and what are its characteristics?
e How to calculate the address of an array element?
e Time complexity of accessing an element?

e Difference between a one-dimensional and a two-
dimensional array?

e Why is traversing a matrix row by row more efficient?

Homework

Student grade processing program:

Store grades of N students for M subjects.
Calculate the average score for each student.

Find the best student and the most difficult subject.
Display statistics in a table format.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

